

Soils (Part 2): Sources of Organic Nutrients

This mate Authors sed upon Narrated by Fc Constance Carlson S.
De Nistine Montaga re. re, un Constance Carlson 3-**Craig Sheaffer**

Sources of Organic Nutrients

- I. Legumes and green manures
- II. Animal manures
- III. Compost
- IV. Processed fertilizers
- V. Micronutrients and other amendments

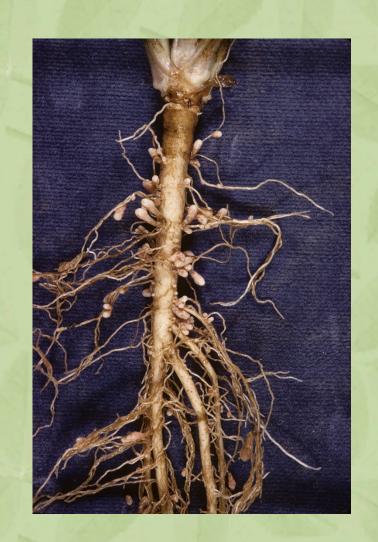
Legume Crops

- Fix nitrogen from atmosphere
 - Rhizobium inoculation will ensure nodulation and N fixation
- Include green manure, grain, and forage crops

Legume Crops

- Grain crops (net N contribution will vary)
 - Soybean
 - Pea
 - Dry bean
- Cover crops and forages
 - Vetch
 - Clover
 - Alfalfa
 - Native legumes

Field pea


Hairy vetch

Alfalfa

Are Your Legumes Fixing Nitrogen?

- Dig up a plant that is over 1 month old, but not flowering
- 2. Remove soil from roots
- 3. Look for nodules on the roots
- 4. Actively-fixing nodules appear pink or red inside

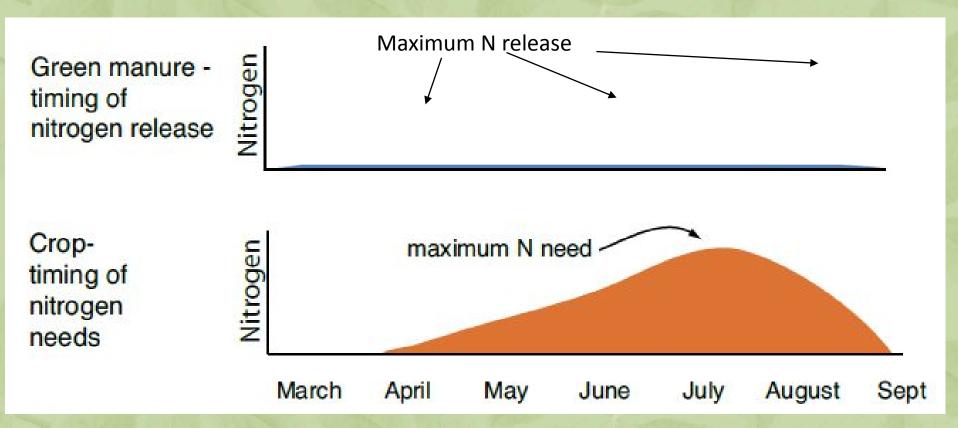
Factors Affecting N Contribution from Legumes

- Biomass production
 - Affected by species,
 stand density, weed
 competition, stand age
- Biomass composition
 - Carbon:Nitrogen (C:N) ratio depends on crop maturity

Factors Affecting N Contribution from Legumes

- Harvest regime
 - Number and timing of cuttings
 - Biomass removal
- Method and timing of incorporation

Nitrogen Release and Loss


- Decomposition rates depend on soil temperature, moisture, biology
- Can be lost to denitrification

Crop Access to Legume N

Availability may not be synchronous with crop need (feed the soil!)

N Credits from Legumes

Reduction in fertilizer need of following crop (recommendations developed for conventional agriculture)

Crop	N credit (lb/A) to first-year corn*				
Alfalfa					
1 year old stand	75				
2+ year old stand	150				
Red or alsike clover	75				
Grass/legume hay	75				
Field peas or dry beans	20				
*On medium-textured soils					

Source: Kaiser et al., 2016

Non-Legume Green Manures

 Do not fix N, but can hold nutrients for later release

Contribute to soil organic matter and

microbial activity

 Decomposition of high C:N crops can immobilize N

Carbon to Nitrogen Ratios of Organic Materials

Material	C:N Ratio
Oat straw	70:1
Rye cover crop (anthesis)	37:1
Pea straw	29:1
Mature alfalfa hay	25:1
Ideal Microbial Diet	24:1
Young alfalfa hay	13:1
Hairy vetch cover crop	11:1

Sources of Organic Nutrients

- I. Legumes and green manures
- II. Animal manures
- III. Compost
- IV. Processed fertilizers
- V. Micronutrients and other amendments

Raw Animal Manures: Summary

- May be solid or liquid
- Hog, dairy/beef, poultry, other
- Need not be from organic sources
- Additional testing may be required for conventional manure

Raw Animal Manures: Application

- Cannot apply to frozen ground
- Application times restricted for food safety

Crop	Permitted application		
Feed crops	Anytime		
Food crops with edible portion not in			
contact with soil (e.g. corn)	≥90 days before harvest		
Food crops with edible portion in	≥120 days before		
contact with soil (e.g. carrots)	harvest		

Typical nutrient content of stored manure

		N	P_2O_5	K ₂ O	N	P ₂ O5	K ₂ O
		pounds/1000 gallons		pounds/ton			
Swine	Farrowing	27	27	15	-	-	-
	Nursery	34	25	18	-	-	-
	Gestation	40	42	18	22	27	14
	Finishing	53	39	29	22	22	17
Dairy	Cows	25	15	27	11	7	9
	Heifers	-	-	-	13	12	19
Beef	Cows	-	-	-	15	10	9
	Steers	-	-	-	14	9	14
Poultry	Turkeys	-	-	-	44	63	34
	Broiler	-	-	-	59	63	40
	Layer	-	-	-	39	57	30

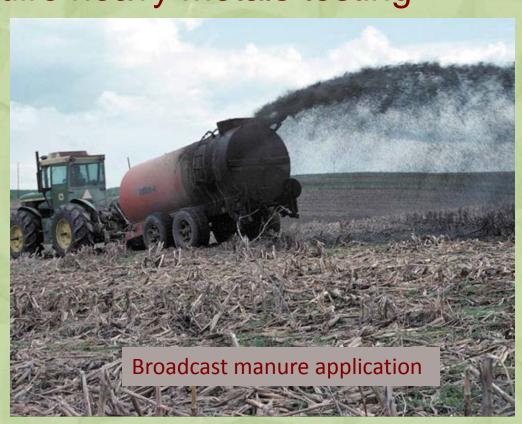
Adapted from UMN Extension

University of Minnesota

Determining Manure Application Rates

- 1. Establish nutrient needs of the crop
 - Apply credits from legumes or previous manure applications
- 2. Determine the nutrient content of manure
- 3. Determine nutrient availability to crop
- 4. Calculate rate of application

See worksheet and reference tables in Resources section of this unit


% Nitrogen Available over Time and Manure Type (Sweep Application)

Manure Type	Year 1	Year 2	Year 3
Beef Cattle	60	25	10
Dairy Cattle	55	25	15
Swine	80	15	0

Raw Animal Manures: Considerations

- Be aware of contaminants
 - Certifier may require heavy metals testing
- Be careful with flow control to ensure uniform application and desired rate

Sources of Organic Nutrients

- I. Legumes and green manures
- II. Animal manures
- III. Compost
- IV. Processed fertilizers
- V. Micronutrients and other amendments

Making Compost

- Various base materials
 - Manure
 - Bedding
 - Plant materials
- Methods include windrow, static pile, and in-vessel
- Must follow guidelines for composting manure

Guidelines for Organic Compost

- Initial C:N ratio between 40:1 and 25:1
- For contained systems or static aerated piles: temperatures must remain between 131° and 170° F for 3 days
- For windrow systems: temperatures must remain between 131° and 170° F for 15 days and windrow must be turned 5 times in that period

John McQueen, eOrganic

Applying Compost

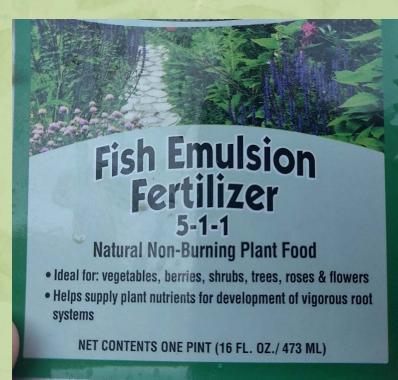
- No organic restrictions on timing of applicat
 - State environmental laws may apply
- Incorporate to allow microbial breakdown
- Manure not composted according to guidelines will need to follow application rules for raw manure

Nutrient Availability from Compost

- Generally lower nutrient content than raw manure
 - Meeting N needs may result in excess P, salt, other ions
- 30% or less of N available in first year
 - Will depend on base material and composting method

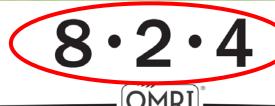
Composted turkey manure

Sources of Organic Nutrients


- I. Legumes and green manures
- II. Animal manures
- III. Compost
- IV. Processed fertilizers
- V. Micronutrients and other amendments

Commercial Fertilizers

- Fish products
- Heat treated manure products
- Sodium nitrate (Chilean nitrate)
- Bagged/blended formulations
 - May contain feather or blood meal, fish or aquatic plant extracts, humic acids



How to Read a Fertilizer Label

Amounts and chemical forms of nutrients present

Percentage of slow release nitrogen

ALL NATURAL

GRANULATED SLOW RELEASE NITROGEN FERTILIZER

*7.2% slowly available nitrogen from aerobically composted turkey litter and feather meal

110414 F689

Coverage & Application Rates

-Coverage

50 lb. covers 4000 ft² © 1 lb. N per 1000 ft² provides 44 lb. N per acre

22.67 kg covers 372 m² @ 0.5 kg N per 100 m² provides 50 kg N per ha

-Application Rates

12.5 lb. per 1000 ft² 6.2 kg per 100 m²

Medium Grade: Mesh Size -7+14 (2.8 mm to 1.4 mm) SGN 200

Store in a cool dry place.

Keep out of reach of pets and children.

Information regarding the contents and levels of metals in this product is available on the internet at http://www.aapfco.org/metals.htm

Net Wt. 50 lb. (22.67 kg)

% nitrogenphosphoruspotassium (N-P-K) by weight

Commercial Fertilizers: Considerations

- Check OMRI lists for organic status of products
- Apply as directed, within organic guidelines
- Some effects may be similar to conventional
 - Highly available (soluble) nutrients
 - Vulnerable to leaching and loss
 - May reduce pH

Sources of Organic Nutrients

- I. Legumes and green manures
- II. Animal manures
- III. Compost
- IV. Processed fertilizers
- V. Micronutrients and other amendments

Micronutrient Amendments

- Some synthetics are allowed
 - Need documentation of deficiency from soil or tissue test
- Apply at rates recommended in test results
- Check in with certifier!

Other Products and Practices

- "Magic bullets" you may hear about
 - Base-Cation Saturation Ratio
 - Fungal:bacterial ratio
 - Inoculant products (other than Rhizobium)
- Many sales pitches use scientific language, but are NOT supported by published, peer-reviewed research

Other Products and Practices

- Not all products are reputable
 - Be wary of paying \$\$
 for undocumented
 benefits
 - Seek guidance from Extension, certifier, experienced growers
- If it seems too good to be true, it probably is!

 Rotation is your main tool Use permitted plant- and animal-based nutrient sources Check with your certifier!

Resources

- National List of allowed and prohibited substances for organic farming
- <u>List of manure testing labs</u> Minnesota Department of Agriculture
- <u>Field soil sampling instructions</u> University of Minnesota
- Worksheet for calculating manure application University of Minnesota
- Composting instructions eXtension
- Organic Production Guide ATTRA
- Guide to permitted inputs NRCS
- Can I Use this Input on My Organic Farm? –
 eXtension

Sources of Organic Nutrients

- I. Legumes and green manures
- II. Animal manures
- III. Compost
- IV. Processed fertilizers
- V. Micronutrients and other amendments

This material is based upon work that is © 2017 Regents of the University of supported by the National Institute of Minnesota. All rights reserved Food and Agriculture, U.S. Department The University of Minnesota is an equal of Agriculture, under grant number opportunity educator and employer.

United States Department of Agriculture National Institute of Food and Agriculture

References

- Baker, B. 2009. Can I Use this Fertilizer on My Organic Farm? http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_045863.pdf
- Coleman, P. 2012. Guide for Organic Crop Producers. ATTRA. https://attra.ncat.org/attra-pub/summaries/summary.php?pub=67
- Eghball, B., and J. F. Power. 1999. Phosphorus-and nitrogen-based manure and compost applications corn production and soil phosphorus. *Soil Science Society of America Journal* 63: 895-901.
- Evans, J., et al. 2001. Net nitrogen balances for cool-season grain legume crops and contributions to wheat nitrogen uptake: a review. *Australian Journal of Experimental Agriculture* 41: 347-359.
- Fernandez, A. L., C. C. Sheaffer, D. L. Wyse, C. Staley, T. J. Gould, and M. J. Sadowsky. (2016). Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Science of the Total Environment, 566: 949-959.

References (cont.)

- Hernandez, J.A. and M.A. Schmitt. 2012. Manure management in Minnesota. University of Minnesota Extension. https://www.extension.umn.edu/agriculture/manure-manure-management-and-air-quality/manure-application/steps-for-calculating-rates/table_3.html
- Kaiser, D., Fernandez, F., Lamb, J.A., Coulter, J.A., and B. Barber, 2016. Fertilizing corn in Minnesota. University of Minnesota Extension AG-FO-3790-D. University of Minnesota, St. Paul, MN.
- Kumar, K., and M. G. Kuan. 2000. Biological nitrogen fixation, accumulation of soil nitrogen and nitrogen balance for white clover (Trifolium repens L.) and field pea (Pisum sativum L.) grown for seed. Field Crops Research 68: 49-59.
- Lamb, J., S. Huerd, and K. Moncada. 2010. Soil Health. Chapter 3 in Risk Management for Organic Producers. Moncada, K. and C. Sheaffer, editors. University of Minnesota, St. Paul, MN.

References (cont.)

- Lamb, J., C. Sheaffer, and K. Moncada. 2010. Soil Fertility. Chapter 4 in Risk Management for Organic Producers. Moncada, K. and C. Sheaffer, editors. University of Minnesota, St. Paul, MN.
- Peterson, T. A, and M. P. Russelle. 1991. Alfalfa and the nitrogen cycle in the Corn Belt. *Journal of Soil and Water Conservation* 46: 229-235.
- USDA-AMS. 2017. National Organic Program. 7 C.F.R. §205.
- USDA-NRCS. 2011. Carbon to Nitrogen Ratios in Cropping Systems. https://www.nrcs.usda.gov/
- Wander, M. 2015. Managing Manure Fertilizers in Organic Systems. eXtension.
 - http://articles.extension.org/pages/18628/managing-manure-fertilizers-in-organic-systems