

For Organic Systems

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

Small Grains in the Midwest

Small Grains in the Midwest

Why Include Small Grains in Transition to Organic Systems?

A. Diverse marketing opportunities

Why Include Small Grains in Transition to Organic Systems?

- B. Weed control
- C. Soil organic matter building

Small Grains Competitiveness with Weeds

Rye = triticale > barley = oat > wheat

Allelopathy

The ability of a plant to produce biochemical that can affect germination, growth, survival, and reproduction of other plants

Soil Organic Matter Building with Small Grains

- Greater contributions to soil organic matter
- Nutrients requirements lower than corn

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

- 1.5 2 inch
 depth
- Winter grains will benefit being planted into stubble
- Avoid planting after another grass crop

Row Spacing

- Narrow row spacing increases crop competition
- Decreases weed pressure
- As narrow as 6"

High Seeding Rates for Organic

Small Grain Spp.	Conventional Seeding Rates
Barley, Oat, Winter Wheat	150 to 200 lb/acre
Rye	120 to 175 lb/acre
Triticale (winter)	140 to 190 lb/acre
Triticale (spring)	175 to 250 lb/acre
Wheat (spring)	175 to 225 lb/acre

Variety Selection

Emphasis on:

- Early maturing
- Disease resistance
- Grain quality
- Winter hardiness
- Locally-tested and verified

Alternative Establishment Strategies: Underseeding

Underseed with red clover

Alternative Establishment Strategies: Underseeding/Nurse Crop

Underseed as nurse/companion crop for alfalfa establishment

Alternative Establishment Strategies: Double/Cross Planting

Plant with double passes at 45 or 90 degree angles

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

Tine Weeder in Small Grains

Rotary Hoe in Small Grains

Timing of Mechanical Weeding

Weed size possible to control with post-emergence tillage

Weeds too large for post-emergence tillage

Test Weeding Implements First!

Crop damage from mechanical weeding operation

Perennial Weeds

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

Managing Diseases with Rotation

Table 2-3. Pests that are affected by rotation and the number of years it takes to break several different pest cycles.

Small grains	Fusarium	1-2 years
Small grains	Septoria leaf glume blotch	2 years
Small grains	Bacterial leaf blight	2 years
Small grains	Common root rot	2 years
Small grains	Ergot	1 year
Small grains	Scab	2-3 years

Wiersma, et al, 2010.

Managing Diseases with Rotation

Healthy resistant barley (right) and susceptible barley showing symptoms of Fusarium head blight (left).

Fungal Diseases

Fungal Diseases

Michael McMullen, North Dakota State University

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

Insect Pests

Phil Glogoza, University of Minnesota Extension

Sawfly larva

Phil Glogoza, University of Minnesota Extension

Wheat Stem Sawfly

Lodged wheat stems from wheat stem sawfly damage

Wheat Stem Sawfly

Hessian Fly

Aphids and Mites

Integrated Pest Management

Increasing degree of system disturbance

Integrated Pest Management for Small Grains

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

Organic Soil Fertility Management

- Nitrogen is often most limiting nutrient
- Nitrogen deficiency contributes to yield losses from weed competition

Organic Soil Fertility Management

N deficiency symptoms:

- Yellowing
- Stunting

Organic Soil Fertility Management

Fertilizing Considerations:

- Immediately available N (nitrate + ammonium) vs. N available in long term
- At planting + tillering

FIELD:		DATE SAMPLED:		DATE RECEIVED: 5/		
Ref. No. Sample Lab. No.	Acres Depth	pH Salts mmho/cm	Nitrate O.M. N (%) (#/ac)	Phosphorus Olsen Bray (ppm) (ppm)	Potas (ppm)	
1890192 1 18567	0- 6" 6-12"	8.0 0.34 D.25	24 6	15	116	
1890193 2 18568	0- 6" 6-12"	8.0 0.26 0.25	15 6	14	104	
1890194 3 18569	0- 6" 8 6-12"	8.0 0.51 0.35	15 6	15	106	
1890195 4 18570	0- 6" 8 6-12"	0.37 0.30	21 5	17	104	
1890196 5 18571	0- 6" 8. 6-12"	0.56	27 8	15	109	
1890197 6 18572	0- 6" 8.0 6-12"	0 0.36 0.38	26 8	16	104	
890198 7	0-6" 80	0.47	22	15	100	

Green Manures or Legumes in Rotation

Previous Crop	1ª Year N Credit lb. N/ac	
Soybean	20	
Edible Beans, Field Peas	10	
Harvested Sweet Clover	10	
Harvested Alfalfa¹/or non- Harvested Sweet Clover		
4- 5 plants/ft²	75	
2- 3 plants/ft²	50	
1- 2 plants/ft²	25	
1 or fewer plants/ft²	0	
Harvested red clover	35	

Kaiser, et al., 2013

Green Manures or Legumes in Rotation

Phosphorus

Phosphorus Fertilizers

- Rock phosphate
- Manure
- Compost
- Fish emulsion
- Bone meal

Rotating for Phosphorus

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

Harvesting for Forage

 Good quality hay or silage

 Harvest at boot stage or dough stage

Harvesting for Forage

Grazing harvest

Weed control

Harvesting Small Grains

- Swath when stalk
 1 inch below the spike is yellow
- Swath when grain moisture is 35 to 40%

Harvesting Small Grains

Combine when grain moisture
 <15%

 Use a Draper combine header

Quality Control

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage

VIII. Marketing

Grain Quality

Quality Parameters:

- Pre-harvest sprouting
- Protein
- Vomitoxin content

Selling Organic Grain

Marketing occurs on individual basis

Alternative Small Grain Crops "Ancient Grains"

Spelt

Alternative Small Grain Crops "Ancient Grains"

Einkorn

Small Grains

- I. Introduction
- II. Planting
- III. Weed management
- IV. Disease management
- V. Insect pest management
- VI. Fertility management
- VII. Harvest and storage
- VIII. Marketing

These contended in the conversity of support the beautiful highest destitute of the diance as a contended in the conversity of the convers

United States Department of Agriculture National Institute of Food and Agriculture

References

- Bowman, G. (ed.) 2002. Steel in the field: a farmer's guide to weed management tools. Sustainable Agriculture Network, U.S. Department of Agriculture. Beltsville, MD.
- Beres et al. 2010. Weed-competitive ability of spring and winter cereals in the Northern Great Plains. Weed Technology 24:108-116.
- Dawson, J. 2017. Food-grade organic grain production OGRAIN Workshop Jan 2017. Department of Horticulture, UW Madison.
- Kaiser, D.E., Lamb, J.A., Sims, A., and Wiersma, J. 2013. Nutrient management: fertilizing wheat in Minnesota. AG-FO-3814-C. University of Minnesota Extension.
- Knodel, J., Shanower, T., and Beauzay, P. 2016. Integrated pest management of wheat stem sawfly in North Dakota. North Dakota State University Extension Service, E1479.
 - https://www.ag.ndsu.edu/publications/crops/integrated-pest-management-of-wheat-stem-sawfly-in-north-Dakota
- Mohler, C.L. and S.E. Johnson (editors). 2009. Crop Rotation on Organic Farms: A Planning Manual, NRAES 177. Natural Resource, Agriculture, and Engineering Service.

References (cont.)

- Moncada, K.M. and Sheaffer, C.C. 2010. Risk management guide for organic producers. University of Minnesota, St. Paul, MN.
- Simmons, S., Oelke, E., and Anderson, P. Growth and development guide for spring wheat. University of Minnesota Extension. https://www.extension.umn.edu/agriculture/small-grains/growth-and-development/spring-wheat/
- Tallman, S. 2011. Disease and insect management in organic small grains. National Sustainable Agriculture Information Service (ATTRA). http://foodsystems.msu.edu/uploads/files/disease-and-insect-management-in-organic-small-grains.pdf
- Wiersma, J., K. Moncada, and M. Brakke. 2010. Small Grains. Chapter 11 in Risk Management for Organic Producers. Moncada, K. and C. Sheaffer, editors. University of Minnesota, St. Paul, MN.
- Wiersma, J.J., Durgan, B.R., Hollingsworth, C., MacRae, I.V., and Rehm, G. 2012. Winter wheat in Minnesota. Small Grains Production. University of Minnesota Extension. https://www.extension.umn.edu/agriculture/small-grains/production-guides-and-cropping-systems/winter-wheat-in-minnesota/
- Wiersma, J.J., and J.K. Ransom (editors). 2005. Small Grains Field Guide. University of Minnesota Extension Service, St. Paul, MN and North Dakota State University Extension Service, Fargo, ND.